Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e22027, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034618

RESUMEN

Eliminating synthetic dyes and organic contaminants from water is crucial for safeguarding human health and preserving the environment. In this study, we explored the effectiveness of Ag-Cu-CeO2 nanocomposites as adsorbents to remove Congo Red dye from water. Three compositions of Ag-Cu-CeO2 nanocomposites (10:20:70, 15:15:70, and 20:10:70) have been synthesized by the aqueous coprecipitation method. A comprehensive analysis was performed by different techniques including X-ray diffraction, Fourier transform infrared spectroscopy, BET surface area determination, Thermogravimetric analysis, Scanning electron microscopy, and TEM. The synthesized nanocomposites have a dimension of 5 ± 1 nm and a high surface area (51.832-78.361 m2g-1). Among these, the nanocomposite with composition 15:15:70 showed the highest adsorption capacity of 4.71 mg/g adsorption (96.83 % removal) from the 0.8 × 10-4 M (55.6 mg/l) Congo Red solution at pH values of 2 at 20 °C with contact time of 3h. The adsorption data is best fitted in the Freundlich adsorption isotherm and pseudo-second-order kinetic model. The negative values of enthalpy variation (-27.57, -26.43, and -16.73 kJ/mol) demonstrated that the adsorption was spontaneous and exothermic. The cycling run showed a mere 12 % deactivation after five cycles of use thus indicating that Ag-Cu-CeO2 nanocomposites hold great potential as effective and eco-friendly adsorbents to remove Congo Red from water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...